
CYDES 2023: Manual Unpacking
MPRESS(2.19) - The ESP Trick

Before we get started, I would like to take a moment to thankyou the organizers of the

Cyber Warzone CTF challenges. The National Cyber Security Agency Malaysia (NACSA),

Velum Labs, etc and the technical team WargamesMY have all worked hard to make this

event success.

Warmup

I spend many hours figuring it out, lol. The challenge can be solve with easy way, i choose

the hard road. I love myself.

Dynamic Analysis

This is a clear indicator that the program is packed.

By looking at the sample, we know its PEx32 file type and the entry point is 00406221 and

the file is packed. The plan here is that, we need to unpacked it first, but how? should we

just find any public automated tools? or can we unpacked it manually?

So, the answer is that we will do it manually. Because, why not? :)

Unpacking MPRESS(2.19) - The ESP Trick

In order to successfully reverse engineer packed we need to debug it until we get to the

decompressed memory section. Then we can dump that out and analyze that dumped

executable.

One trick in doing that is the “ ESP trick”. So named for the ESP register, we can use this

trick to set a hardware breakpoint on the ESP register, and when we get to the breakpoint

we should be at the Original Entry Point (OEP) of the program. We can then dump the rest

of the executable and we should have our unpacked executable.

Load the sample to any debugger that you can use, make sure it support x32. Run as admin

to get full access on it.

Step over to the call

Then we select the first four bytes in the dump at the bottom of debugger and set a

hardware access breakpoint on the DWord. This will have us break right before we unpack

the executable.

and click run, it will stop at the breakpoint

next, you can analyst the code

It's unconditional JMP, it will jump to address warmup.004013E5

Check the address, make sure its on the right place

We can use OllyDumpEx to Dump the process

Copy the Entry point before and put it somewhere note, next click to get the current EIP and

dump it

Save the file(WarmUp_Dump.exe).

Get the current EIP and click IAT Auto Search to automatically find the Import Address Table

of the executable. After that click “Get Imports” to get a list of the imports that the

executable has. Choose the dump file and fix it.

This is the unpacked version, look at the size. Rename it to make things easier.

Now everything looks clear on the strings, we succesfully unpacked the sample.

Next, we just need to crack the software and get the flag.

Run and go to breakpoint software

Go to the false instruction address

The comparison will be happen on the top

Do analyze the instruction carefully

The false will break at this address, keep step over.

You will find instructor that compare between ECX and EAX. This is where comparison is

made.

That's the Flag.

Ok challenge. but I’m surprised it only got 2 solves! I think rev/pwn tend to scare people

away sadly.

 cydes{468bfe2bd0d39a960b0fafb3d1e389ee}

Power of Rewind

This one got the code, i just brute force(AI) the code until i get the flag, Because i have no

time to waste.

 cydes{ce65c25c5bd0fa669bd3bdef7aa9bdac}

$base64String =

"FgJqAMKJ5ePgsWMLneXHLrXKhmjNwCYUDCpD3u8sbiT8sEJ9M1GmdzrYkXP64PYv"

$encryptedBytes = [System.Convert]::FromBase64String($base64String)

$key = 145,96,34,150,165,222,211,99,165,119,17,98,225,14,249,255

$iv = 251,122,202,111,165,48,247,134,32,88,101,199,33,154,190,56

$aes = New-Object System.Security.Cryptography.RijndaelManaged

$aes.Mode = [System.Security.Cryptography.CipherMode]::CBC

$aes.Padding = [System.Security.Cryptography.PaddingMode]::PKCS7

$aes.Key = $key

$aes.IV = $iv

$decryptor = $aes.CreateDecryptor()

$decryptedBytes = $decryptor.TransformFinalBlock($encryptedBytes, 0,

$encryptedBytes.Length)

$decryptedString = [System.Text.Encoding]::UTF8.GetString($decryptedBytes)

$decryptedString

